THE PLACE AND ROLE OF CONTEXTUAL PROBLEMS IN REALISTIC MATHEMATICS EDUCATION
Keywords:
contextual problems, realistic mathematics education, modeling, visualization, learning and teaching mathematicsAbstract
Contemporary theories of mathematics education were created primarily in response to the many criticisms of traditional mathematics education. One of the recent theories is the theory of realistic mathematics education (Realistic Mathematics Education - RME), which interprets mathematics as a human activity, and learning process is seen as an activity for solving everyday problems, namely the problems from contexts. The contexts are usually complex structures, and processes of their modeling and mathematization go through several stages. That is why it is necessary for their solving, in the process of teaching mathematics, to apply models that provide visualization.
Accordingly, the first part of the paper, along with the theoretical interpretation of the aforementioned aspects of modern mathematics education, provides examples of contextual problems whose modeling uses different types of graphs.
The methodological part of the paper is focused on examining how much contextual problems, which determine realistic mathematics education, are present in mathematics teaching of basic school cycle.
References
Blum, W., Leiss, D. (2007). How do students and teachers deal with modelling problems?. v: Haines, C. et al. (ur.). Mathematical Modelling: Education, Engineering and Economics. Horwood: Chichester, 222–231.
Van den Heuvel-Panhuizen, M. (1996). Assessment and Realistic Mathematics Education. Utrecht: CD-Beta Press.
Van den Heuvel-Panhuizen, M. (2000). Mathematics Education in the Netherlands: A guided tour. Freudenthal Institute Cd-rom for ICME9. Utrecht: Utrecht University.
Gravemeijer, K. (1990). Realistic geometry instruction. In K. Gravemeijer, M.van den Heuvel, & L. Streefland (Eds.). Contexts, Free Production, Tests and Geometry in Realistic mathematics Education. Utrecht: Freudenthal Institute.
Gravemeijer, K. (1994). Developing Realistic Mathematics Education. Utrecht: CD-Beta Press.
Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical Thinking and Learning, Vol. 1, No. 2, 155– 177.
De Lange, J. (1987). Mathematics, insight and meaning: Teaching, learning andtesting of mathematics for the life and social sciences. Utrecht: OW & OC.
De Lange, J. (1996). Using and applying mathematics in education. In A. J. Bishop; K. Clements; C. Keitel; J. Kilpatrick; C. Laborde (Eds.) International handbook of mathematics education: Part 1. Dordrecht: Kluwer, 49–98.
Elbers, E. (2003). Classroom Interaction as Reflection: Learning and Teaching Mathematics in a Community of Enquiry. Educational Studies in Mathematics, Vol. 54, No. 1, 77–99.
Zech, F. (1999). Grundkurs Mathematikdidaktik - Theoretische und praktische Anleitungen für das Lehren und Lernen von Mathematik. Weinheim und Basel: Beltz Verlag.
Meyer, M. R., Dekker, T., Querelle, N. (2001). Context in mathematics curricula. Mathematics Teaching in the Middle School, Vol. 6 (9), 522–527.
Милинковић, Д. (2013а). Метода фокусног дијаграма у функцији развијања логичког мишљења и расуђивања. Норма, Vol. 18 (1), 9–21.
Милинковић, Д. (2013б). Примјена метода математичког моделовања у почетној настави математике. У зборнику радова са Научног скупа ”Наука и глобализација” (91–102). Пале: Универзитет у Источном Сарајеву Филозофски факултет Пале.
Müller, G., Wittmann, E. (1984). Der Mathematikunterricht in der Primarstufe. Braunschweig: Vieweg.
Treffers, A. (1978). Wiskobas Doelgericht. Utrecht: IOWO.
Treffers, A., & Goffree, F. (1985). Rational analysis of realistic mathematics education. In L. Streefland (Ed.). Realistic Mathematics Education in Primary School. Utrecht: CD-Beta Press, 21–57.
Treffers, A. (1987). Three Dimensions. A Model of Goal and Theory Description in Mathematics Instruction – The Wiskobas Project. Dordrecht: Reidel Publishing Company.
Treffers, A. (1993). Wiskobas and Freudenthal Realistic Mathematics Education. Educational Studies in Mathematics, Vol. 25, No. 1/2, 89–108.
Freudenthal, H. (1991). Revisiting Mathematics Education. China Lectures. Dordrecht: Kluwer Academic Publishers.